A Guide to Designing a Memory fMRI Paradigm for Pre-surgical Evaluation in Temporal Lobe Epilepsy (2024)

1. McIntyre DC, Racine RJ. Kindling mechanisms: current progress on an experimental epilepsy model. Progress Neurobiol. (1986) 27:1–12. 10.1016/0301-0082(86)90010-9 [PubMed] [CrossRef] [Google Scholar]

2. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. (1991) 253:1380–6. 10.1126/science.1896849 [PubMed] [CrossRef] [Google Scholar]

3. Stretton J, Thompson P. Frontal lobe function in temporal lobe epilepsy. Epil Res. (2012) 98:1–13. 10.1016/j.eplepsyres.2011.10.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. de Tisi J, Bell G, Peaco*ck J, McEvoy A, Harkness W, Sander J, et al.. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet. (2011) 378:1388–95. 10.1016/S0140-6736(11)60890-8 [PubMed] [CrossRef] [Google Scholar]

5. Helmstaedter C, Elger CE, Hufnagel A, Zentner J, Schramm J.Different effects of left anterior temporal lobectomy, selective amygdalohippocampectomy, and temporal cortical lesionectomy on verbal learning, memory, and recognition. J Epilepsy. (1996) 9:39–45. 10.1016/0896-6974(95)00070-4 [CrossRef] [Google Scholar]

6. Baxendale S, Thompson P, Harkness W, Duncan J. Predicting memory decline following epilepsy surgery: a multivariate approach. Epilepsia. (2006) 47:1887–94. 10.1111/j.1528-1167.2006.00810.x [PubMed] [CrossRef] [Google Scholar]

7. Manns J, Eichenbaum H. Evolution of declarative memory. Hippocampus. (2006) 16:795–808. 10.1002/hipo.20205 [PubMed] [CrossRef] [Google Scholar]

8. Bowles B, Crupi C, Pigott S, Parrent A, Wiebe S, Janzen L, et al.. Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy. Neuropsychologia. (2010) 48:2640–7. 10.1016/j.neuropsychologia.2010.05.010 [PubMed] [CrossRef] [Google Scholar]

9. Mueller S, Laxer K, Scanlon C, Garcia P, McMullen W, Loring D. Different structural correlates for verbal memory impairment in temporal lobe epilepsy with and without mesial temporal lobe sclerosis. Hum Brain Mapp. (2012) 33:489–499. 10.1002/hbm.21226 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Khalil A, Iwasaki M, Nishio Y, Jin K, Nakasato N, Tominaga T. Verbal dominant memory impairment and low risk for post-operative memory worsening in both left and right temporal lobe epilepsy associated with hippocampal sclerosis. Neurol Med Chir. (2016) 56:716–23. 10.2176/nmc.oa.2016-0004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Willment K, Golby A. Hemispheric lateralization interrupted: material-specific memory deficits in temporal lobe epilepsy. Front Hum Neurosci. (2013) 7:546. 10.3389/fnhum.2013.00546 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Helmstaedter C, Elger CE. Functional plasticity after left anterior temporal lobectomy: reconstitution and compensation of verbal memory functions. Epilepsia. (1998) 39:399–406. 10.1111/j.1528-1157.1998.tb01392.x [PubMed] [CrossRef] [Google Scholar]

13. Gleissner U, Sassen R, Schramm J, Elger CE, Helmstaedter C. Greater functional recovery after temporal lobe epilepsy surgery in children. Brain. (2005) 2822–9. 10.1093/brain/awh597 [PubMed] [CrossRef] [Google Scholar]

14. Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, et al.. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy. Epilepsy Res. (2015) 110:1–9. 10.1016/j.eplepsyres.2014.11.001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Chelune GJ. Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Arch Clin Neuropsychol. (1995) 10:413–32. 10.1093/arclin/10.5.413 [PubMed] [CrossRef] [Google Scholar]

16. Detre J, Maccotta L, King D, Alsop D, Glosser G, D'Esposito M, et al.. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology. (1998) 50:926–32. 10.1212/WNL.50.4.926 [PubMed] [CrossRef] [Google Scholar]

17. Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G, Tracy JI, et al.. Functional MRI predcits post-surgical memory following temporal lobectomy. Brain. (2004) 127:2286–98. 10.1093/brain/awh281 [PubMed] [CrossRef] [Google Scholar]

18. Janszky J, Jokeit H, Kontopoulou K, Mertens M, Ebner A, Pohlmann-Eden B, et al.. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia. (2005) 46:244–50. 10.1111/j.0013-9580.2005.10804.x [PubMed] [CrossRef] [Google Scholar]

19. Lindquist MA.The statistial analysis of fMRI data. Stat Sci. (2008) 23:439–64. 10.1214/09-STS282 [CrossRef] [Google Scholar]

20. Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, et al.. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. (2010) 133(Pt 4):1186–99. 10.1093/brain/awq006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Alessio A, Pereira F, Sercheli M, Rondina J, Ozelo H, Bilevicius E, et al.Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an fMRI study. Hum Brain Mapp. (2013) 40:186–99. 10.1002/hbm.21432 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Sidhu MK, Stretton J, Winston GP, Bonelli S, Centeno M, Vollmar C, et al.. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain. (2013) 136(Pt 6):1868–88. 10.1093/brain/awt099 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Binder JR, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller WM. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia. (2010) 51:618–26. 10.1111/j.1528-1167.2009.02340.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, et al.. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology. (2015) 84:1512–9. 10.1212/WNL.0000000000001461 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Cheung M, Chan A, Lam J, Chan Y. Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy. J Neurol Neurosurg Psychiatr. (2009) 80:1099–106. 10.1136/jnnp.2009.173161 [PubMed] [CrossRef] [Google Scholar]

26. Bonelli SB, Thompson PJ, Yogarajah M, Powell RH, Samson RS, McEvoy AW, et al.. Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study. Brain. (2013) 136(Pt 6):1889–900. 10.1093/brain/awt105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Sidhu MK, Stretton J, Winston GP, McEvoy AW, Symms M, Thompson PJ, et al.. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study. Brain. (2016) 139(Pt 2):415–30. 10.1093/brain/awv365 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Limotai C, McLachlan R, Hayman-Abello S, Hayman-Abello B, Brown S, Bihari F, et al.. Memory loss and memory reorganization patterns in temporal lobe epilepsy patients undergoing anterior temporal lobe resection, as demonstrated by pre-versus post-operative functional MRI. J Clin Neurosci. (2018) 55:38–44. 10.1016/j.jocn.2018.06.020 [PubMed] [CrossRef] [Google Scholar]

29. Parrish T, Gitelman D, LaBar K, Mesulam M. Impact of signal-to-noise on functional MRI. Mag Reson Med. (2000) 44:925–32. 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M [PubMed] [CrossRef] [Google Scholar]

30. Radhakrishnan K, So EL, Silbert PL, Jack CR, Cascino GD, Sharbrough FW, et al.. Predictors of outcome of anterior temporal lobectomy for intractable epilepsy. Neurology. (1998) 51:465–71. 10.1212/WNL.51.2.465 [PubMed] [CrossRef] [Google Scholar]

31. Clusmann H. Predictors, procedures, and perspective for temporal lobe epilepsy surgery. Sem Ultrasound CT MRI. (2008) 29:60–70. 10.1053/j.sult.2007.11.004 [PubMed] [CrossRef] [Google Scholar]

32. Eichenbaum H, Otto T, Cohen NJ.Two functional components of the hippocampal memory system. Behav Brain Sci. (1994) 17:449–72. 10.1017/S0140525X00035391 [CrossRef] [Google Scholar]

33. Brown MW, Aggleton JP. Recognition memory: what are the roles of the perirhinal cortex and hippocampus?Nat Rev Neurosci. (2001) 2:51–61. 10.1038/35049064 [PubMed] [CrossRef] [Google Scholar]

34. Davachi L. Item, context and relational episodic encoding in humans. Curr Opin Neurobiol. (2006) 16:693–700. 10.1016/j.conb.2006.10.012 [PubMed] [CrossRef] [Google Scholar]

35. Hannula DE, Federmeier KD, Cohen NJ. Event-related potential signatures of relational memory. J Cogn Neurosci. (2006) 18:1863–76. 10.1162/jocn.2006.18.11.1863 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. (2007) 11:379–86. 10.1016/j.tics.2007.08.001 [PubMed] [CrossRef] [Google Scholar]

37. Henke K, Weber B, Kneifel S, Wieser HG, Buck A. Human hippocampus associates information in memory. Proc Natl Acad Sci USA. (1999) 96:5884. 10.1073/pnas.96.10.5884 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatr. (1957) 20:11. 10.1136/jnnp.20.1.11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Reas ET, Gimbel SI, Hales JB, Brewer JB. Search-related suppression of hippocampus and default network activity during associative memory retrieval. Front Hum Neurosci. (2011) 5:112. 10.3389/fnhum.2011.00112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Sperling R, Chua E, Cocchiarella A, Rand-Giovannetti E, Poldrack R, Schacter DL, et al.. Putting names to faces: successful encoding of associative memories activates the anterior hipopcampal formation. Neuroimage. (2003) 20:1400–10. 10.1016/S1053-8119(03)00391-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Kirwan CB, Stark CE. Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus. (2004) 14:919–30. 10.1002/hipo.20014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Klamer S, Milian M, Erb M, Rona S, Lerche H, Ethofer T. Face-name association task reveals memory networks in patients with left and right hippocampal sclerosis. Neuroimage Clin. (2017) 14:174–82. 10.1016/j.nicl.2017.01.021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Nadel L, Hardt O. Update on memory systems and processes. Neuropsychopharmacology. (2011) 36:251–73. 10.1038/npp.2010.169 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Squire L. Memory and the hippocampus: a synthesis from findings in rats, monkeys and humans. Psychol Rev. (1992) 99:195–231. 10.1037/0033-295X.99.2.195 [PubMed] [CrossRef] [Google Scholar]

45. Tulving E. Episodic and semantic memory. In: Donaldson W, editors. Organization of Memory.New York, NY: Academic; (1972). p. 381–403. [Google Scholar]

46. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci. (1999) 22:425–44. 10.1017/S0140525X99002034 [PubMed] [CrossRef] [Google Scholar]

47. Yonelinas AP.The nature of recollection and familiarity: a review of 30 years of research. J Mem Lang. (2002) 46:441–517. 10.1006/jmla.2002.2864 [CrossRef] [Google Scholar]

48. Eichenbaum H, Yonelinas A, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. (2007) 30:123–52. 10.1146/annurev.neuro.30.051606.094328 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Henson RN, Shallice T, Dolan RJ. Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain. (1999) 1367–81. 10.1093/brain/122.7.1367 [PubMed] [CrossRef] [Google Scholar]

50. Wais PE, Mickes L, Wixted JT. Remember/know judgments probe degrees of recollection. J Cogn Neurosci. (2008) 20:400–5. 10.1162/jocn.2008.20041 [PubMed] [CrossRef] [Google Scholar]

See Also
fMRI

51. Smith CN, Wixted JT, Squire LR. The hippocampus supports both recollection and familiarity when memories are strong. J Neurosci. (2011) 31:15693–702. 10.1523/JNEUROSCI.3438-11.2011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Tulving E.Memory and consciousness. Can Psychol. (1985) 26:1–12. 10.1037/h0080017 [CrossRef] [Google Scholar]

53. Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JDE. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. (2002) 43:855–63. 10.1046/j.1528-1157.2002.20501.x [PubMed] [CrossRef] [Google Scholar]

54. Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS, et al.. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia. (2007) 48:1512–25. 10.1111/j.1528-1167.2007.01053.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Kennepohl S, Sziklas V, Garver K, Wagner D, Jones-Gotman M. Memory and the medial temporal lobe: hemispheric specialization reconsidered. Neuroimage. (2007) 36:969–78. 10.1016/j.neuroimage.2007.03.049 [PubMed] [CrossRef] [Google Scholar]

56. Patai EZ, Gadian DG, Cooper JM, Dzieciol AM, Mishkin M, Vargha-Khadem F. Extent of hippocampal atrophy predicts degree of deficit in recall. Proc Natl Acad Sci USA. (2015) 112:12830–3. 10.1073/pnas.1511904112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Rolls ET. Pattern completion and pattern separation mechanisms in the hippocampus. In: Jackson A, editors. The Neurobiological Basis of Memory.Switzerland: Springer; (2016). 10.1007/978-3-319-15759-7_4 [CrossRef] [Google Scholar]

58. Meltzer JA, Constable RT. Activation of human hippocampal formation reflects success in both encoding and cued recall of paired associates. Neuroimage. (2005) 24:384–97. 10.1016/j.neuroimage.2004.09.001 [PubMed] [CrossRef] [Google Scholar]

59. Habib R, Nyberg L. Neural correlates of availability and accessibility in memory. Cereb Cortex. (2008) 18:1720–6. 10.1093/cercor/bhm201 [PubMed] [CrossRef] [Google Scholar]

60. de Zubicaray G, McMahon K, Eastburn M, Pringle AJ, Lorenz L, Humphreys MS. Support for an auto-associative model of spoken cued rcall: evidence from fMRI. Neuropsychologia. (2007) 45:824–35. 10.1016/j.neuropsychologia.2006.08.013 [PubMed] [CrossRef] [Google Scholar]

61. Buck S, Bastos F, Baldweg T, Vargha-khadem F.A functional MRI paradigm suitable for language and memory mapping in paediatric temporal lobe epilepsy. Front Neurol. (2019). [Epub ahead of print]. [PMC free article] [PubMed] [Google Scholar]

62. Spaniol J, Davidson P, Kim A, Han H, Moscovitch M, Grady C. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia. (2009) 47:1765–79. 10.1016/j.neuropsychologia.2009.02.028 [PubMed] [CrossRef] [Google Scholar]

63. Saddiki N, Hennion S, Viard R, Ramdane N, Lopes R, Baroncini M, et al.. Encoding and immediate retrieval tasks in patients with epilepsy: a functional MRI study of verbal and visual memory. J Neuroradiol. (2018) 45:157–63. 10.1016/j.neurad.2018.02.003 [PubMed] [CrossRef] [Google Scholar]

64. Dupont S, Samson Y, Van de Moortele P, Samson S, Poline J, Adam C, et al.. Delayed verbal memory retrieval: a functional MRI study in epileptic patients with structural lesions of the left medial temporal lobe. Neuroimage. (2001) 14:995–1003. 10.1006/nimg.2001.0908 [PubMed] [CrossRef] [Google Scholar]

65. Powell H, Richardson M, Symms M, Boulby P, Thompson P, Duncan J. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatr. (2008) 79:686–93. 10.1136/jnnp.2007.115139 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Limotai C, Mirsattari S. Role of functional MRI in presurgical evaluation of memory function in temporal lobe epilepsy. Epilepsy Res Treat. (2012) 2012:687219. 10.1155/2012/687219 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Towgood K, Barker GJ, Caceres A, Crum WR, Elwes RDC, Costafreda SG, et al.. Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy. Hum Brain Mapp. (2015) 36:1595–608. 10.1002/hbm.22726 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Barch D, Sabb F, Carter C, Braver T, Noll D, Cohen J. Overt verbal responding during fMRI scanning: empirical investigations of problems and potential solutions. NeuroImage. (1999) 10:642–57. 10.1006/nimg.1999.0500 [PubMed] [CrossRef] [Google Scholar]

69. Birn R, Cox R, Bandettini P. Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage. (2004) 23:1046–58. 10.1016/j.neuroimage.2004.07.039 [PubMed] [CrossRef] [Google Scholar]

70. Hayama H, Vilberg K, Rugg M. Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network?J Cogn Neurosci. (2012) 24:1127–37. 10.1162/jocn_a_00202 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Okada K, Vilberg K, Rugg M. Comparison of the neural correlates of retrieval success in tests of cued recall and recognition memory. Hum Brain Mapp. (2012) 33:523–33. 10.1002/hbm.21229 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. (2008) 49:1377–94. 10.1111/j.1528-1167.2008.01625.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Stark C, Squire L.When zero is not zero: the problem of ambiguous baseline conditions in fMRI. PNAS USA. (2001) 98:12760–6. 10.1073/pnas.221462998 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Seghier ML, Price CJ. Interpreting and utilising intersubject variability in brain function. Trends Cogn Sci. (2018) 22:517–30. 10.1016/j.tics.2018.03.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Lebreton M, Palminteri S.Assessing inter-individual variability in brain-behavior relationship with functional neuroimaging. bioRxiv [Preprint]. (2016). 10.1101/036772 [CrossRef] [Google Scholar]

76. Li R, Yin S, Zhu X, Ren W, Yu J, Wang P, et al.. Linking inter-individual variability in functional brain connectivity to cognitive ability in elderly individuals. Front Aging Neurosci. (2017) 9:385. 10.3389/fnagi.2017.00385 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Haynes JD. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron. (2015) 87:257–70. 10.1016/j.neuron.2015.05.025 [PubMed] [CrossRef] [Google Scholar]

78. Henson R. What can functional neuroimaging tell the. Q J Exp Psychol. (2005) 58:193–233. 10.1080/02724980443000502 [PubMed] [CrossRef] [Google Scholar]

79. Henson RNA, Price CJ, Rugg MD, Friston KJ. Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage. (2002) 15:83–97. 10.1006/nimg.2001.0940 [PubMed] [CrossRef] [Google Scholar]

80. Mechelli A, Henson RNA, Price CJ, Friston KJ. Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage. (2003) 18:806–10. 10.1016/S1053-8119(02)00027-7 [PubMed] [CrossRef] [Google Scholar]

81. Maus B, Van Breukelen GJ, Goebel R, Berger MP.Optimization of blocked designed in fMRI studies. Psychometrika. (2010) 75:373–90. 10.1007/s11336-010-9159-3 [CrossRef] [Google Scholar]

82. Visscher K, Miezin F, Kelly J, Buckner R, Donaldson D, McAvoy M, et al.. Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage. (2003) 19:1694–708. 10.1016/S1053-8119(03)00178-2 [PubMed] [CrossRef] [Google Scholar]

83. Friston KJ. Functional and effective connectivity: a review. Brain Connect. (2011) 1:13–36. 10.1089/brain.2011.0008 [PubMed] [CrossRef] [Google Scholar]

84. Mahmoudi A, Takerkart S, Regragui F, Boussaoud D, Brovelli A. Multivoxel pattern analysis for fMRI data: a review. Comput Math Methods Med. (2012) 2012:961257. 10.1155/2012/961257 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Rogers B, Morgan V, Newton A, Gore J. Assessing functional connectivity in the human brain by FMRI. Magn Reson Imaging. (2007) 25:1347–57. 10.1016/j.mri.2007.03.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Bonnici H, Chadwick MJ, Kumaran D, Hassabis D, Weiskopf N, Maguire E. Multi-voxel pattern analysis in human hippocampal subfields. Front Hum Neurosci. (2012) 6:290. 10.3389/fnhum.2012.00290 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Bonnici H, Sidhu M, Chadwick M, Duncan J, Maguire E. Assessing hippocampal functional reserve in temporal lobe epilepsy: a multi-voxel pattern analysis of fMRI data. Epilepsy Res. (2013) 105:140–9. 10.1016/j.eplepsyres.2013.01.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Soares JM, Magalhães R, Moreira PS, Sousa A, Ganz E, Sampaio A, et al.. A hitchhiker's guide to functional magnetic resonance imaging. Front Neurosci. (2016) 10:515. 10.3389/fnins.2016.00515 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Bennett C, Miller M. How reliable are the results from functional magnetic resonance imaging?Ann N Y Acad Sci. (2010) 1191:133–55. 10.1111/j.1749-6632.2010.05446.x [PubMed] [CrossRef] [Google Scholar]

90. Fadiga L. Functional magnetic resonance imaging: measuring versus. Neuroimage. (2007) 37:1042–4. 10.1016/j.neuroimage.2007.02.038 [PubMed] [CrossRef] [Google Scholar]

91. Brandt D, Sommer J, Krach S, Bedenbender J, Kircher T, Paulus F, et al.. Test-retest reliability of fMRI brain activity during memory encoding. Front Psychiatr. (2013) 4:163. 10.3389/fpsyt.2013.00163 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, et al.. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. (2003) 60:969–75. 10.1212/01.WNL.0000049934.34209.2E [PubMed] [CrossRef] [Google Scholar]

93. Clement F, Belleville S. Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp. (2009) 30:4033–47. 10.1002/hbm.20827 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Bennett C, Miller M. fMRI reliability: influences of task and experimental design. Cogn Affect Behav Neurosci. (2013) 13:690–702. 10.3758/s13415-013-0195-1 [PubMed] [CrossRef] [Google Scholar]

95. Friedman L, Stern H, Brown G, Mathalon D, Turner J, Glover G, et al.. Test–retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp. (2008) 29:958–972. 10.1002/hbm.20440 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Friedman L, Glover G. Report on a multicenter fMRI quality assurance protocol. J Magn Res Imaging. (2006) 23:827–39. 10.1002/jmri.20583 [PubMed] [CrossRef] [Google Scholar]

97. Glascher J, Gitelman D.Contrasts Weights in Flexible Factorial Design With Multiple Groups of Subjects. Brain Research Imaging Centre Edinburgh (2008). Available online at: http://www.sbirc.ed.ac.uk/cyril/download/Contrast_Weighting_Glascher_Gitelman_2008.pdf.

98. Olman C, Davachi L, Inati S. Distortion and signal loss in medial temporal lobe. PLoS ONE. (2009) 4:e8160. 10.1371/journal.pone.0008160 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Weiskopf N, Hutton C, Josephs O, Deichmann R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage. (2006) 33:493–504. 10.1016/j.neuroimage.2006.07.029 [PubMed] [CrossRef] [Google Scholar]

100. Seto E, Sela G, McIlroy W, Black S, Staines W, Bronskill M. Quantifying head motion associated with motor tasks used in fMRI. Neuroimage. (2001) 14:284–97. 10.1006/nimg.2001.0829 [PubMed] [CrossRef] [Google Scholar]

101. Afacan O, Erem B, ROby D, Roth N, Roth A, Prabhu S.Evaluation of motion and its effects on brain magnetic resonance image quality in children. Pediatr Radiol. (2016) 46:1728–35. 10.1007/s00247-016-3677-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

A Guide to Designing a Memory fMRI Paradigm for Pre-surgical Evaluation in Temporal Lobe Epilepsy (2024)

FAQs

Can fMRI be used for epilepsy? ›

Due to the implications of functional imaging in detecting difficult-to-find lesions in epilepsy, fMRI analysis holds potential in improving treatment of patients with NLE. There are many different methods of BOLD signal analysis using fMRI to produce functional information.

What is an fMRI paradigm? ›

fMRI Paradigm Designing Tools. A paradigm is a temporal allocation of stimuli to acquire BOLD responses from the subject. During a fMRI experiment, specific paradigms with stimuli or events are used to evoke hemodynamic response or brain activation in the subject.

What does fMRI tell us about memory? ›

Memory functional magnetic resonance imaging (fMRI) has been used to study the localization and functional lateralization of critical structures involved in the specific memory task employed (16–22). Memory fMRI is also useful in the prediction of post-operative memory performance (20, 23, 24).

How do you prepare for an fMRI scan? ›

Before the Scan

There is often no active preparation required for an fMRI scan, but there are a few things to keep in mind. First, it is important to remove all metal objects from your body, as these can interfere with the magnetic field. This includes items such as jewelry, hair clips, and glasses.

What is the best imaging technique for epilepsy? ›

MRI is preferred because it provides more information than CT. In fact, MRI is recommended as the imaging test of choice.

Why is fMRI useful for diagnosing brain disorders? ›

An fMRI scan uses the same MRI machine, but is special because it tracks blood flow in different parts of your brain. Your brain cells use more oxygen when they're working. That means following the blood flow shows the areas of your brain that are working hardest. Those areas appear brighter on an fMRI scan.

What is temporal resolution fMRI? ›

Temporal resolution refers to the accuracy of the scanner in relation of time: or how quickly the scanner can detect changes in brain activity. fMRI scans have a temporal resolution of 1-4 seconds which is worse than other techniques (e.g. EEG/ERP which have a temporal resolution of 1-10 milliseconds).

Does fMRI have good spatial or temporal resolution? ›

Every student in psychology or neuroscience should be able to tell you that fMRI has good spatial resolution (as above), but poor temporal resolution. This is because the haemodynamic response imposes a fundamental limit on the time-precision of the measurement.

How does fMRI work and how has it contributed to the ideas of a brain with separate functional modules in it? ›

Functional magnetic resonance imaging, or FMRI, works by detecting the changes in blood oxygenation and flow that occur in response to neural activity – when a brain area is more active it consumes more oxygen and to meet this increased demand blood flow increases to the active area.

What is a drawback of having an fMRI scan? ›

The biggest complaint from researchers is that fMRI can only look at blood flow in the brain. It can't home in on the activities of individual nerve cells (neurons), which are critical to mental function.

Can an fMRI detect dementia? ›

fMRI is used to look at activity in the brain, like blood flow. fMRI is more commonly used in research rather than dementia diagnosis, to compare brain activity in people with dementia against people without dementia. Usually, the person is given a task to complete during the scan, like a thinking test.

Can an fMRI show intelligence? ›

Functional connectivity (FC), as measured by functional MRI (fMRI), has reliably been shown to correlate with G and IQ.

What not to do before fMRI? ›

Before an fMRI

Be sure to remove all jewelry and any metal or electronic items before having an fMRI. Tell your doctor and radiologist ahead of time if you have any metal objects or medical devices in your body.

When would someone need a fMRI scan? ›

Before performing brain surgery to remove a tumor or abnormal brain tissue, doctors need to have the best possible picture of what is going on inside a patient's head. That's the role of functional magnetic resonance imaging (fMRI)—a procedure that's often performed at Yale Medicine before invasive operations.

How does fMRI study the brain? ›

fMRI relies on detecting small changes in the signals used to produce magnetic resonance images that are associated with neuronal activity in the brain, and it is producing unique and valuable information for applications in both basic and clinical neuroscience.

What type of MRI is done for epilepsy? ›

A functional MRI is a type of imaging that can look at brain activity and determine any abnormal activity. This may also be helpful for identifying the source of the seizures. However, an MRI scan may not be informative for types of epilepsy that do not occur as a result of damage to the brain.

What kind of MRI is used for seizures? ›

If you have recently started having seizures, your doctor may book you in for an epilepsy MRI scan. Magnetic Resonance Imaging (MRI) is one technique used to understand why you are having seizures. The epilepsy MRI findings might help diagnose the kind of epilepsy you have.

Who Cannot use fMRI? ›

fMRI may NOT be safe or appropriate for people: a. with shrapnel or other metal or electronic implants in their bodies (such as pacemakers, aneurysm clips, surgical devices, metallic tattoos on the head, etc.)

Who Cannot have an fMRI? ›

People with the following implants may not be scanned and should not enter the MRI scanning area without first being evaluated for safety: some cochlear (ear) implants. some types of clips used for brain aneurysms. some older cardiac defibrillators and pacemakers.

Top Articles
Latest Posts
Article information

Author: Kerri Lueilwitz

Last Updated:

Views: 6176

Rating: 4.7 / 5 (47 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Kerri Lueilwitz

Birthday: 1992-10-31

Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

Phone: +6111989609516

Job: Chief Farming Manager

Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.